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Fig. 1. We present Evolutive Rendering Models (ERM), a framework with broad applications that enhances existing models by incorporating evolutive
rendering elements, and unlocks new possibilities for previously unattainable tasks. ERM exhibits superior performance across diverse representation types
(MLP-based, grid-based, and point-based models), as well as various rendering mechanism (volumetric rendering and splatting).

The landscape of computer graphics has undergone significant transforma-
tions with the recent advances of differentiable rendering models. These
rendering models often rely on heuristic designs that may not fully align
with the final rendering objectives. We address this gap by pioneering an evo-
lutive rendering models, a methodology where rendering models possess the
ability to evolve and adapt dynamically throughout the rendering process. In
particular, we present a comprehensive learning framework that enables the
optimizitation of three principal rendering elements, including the gauge
transformations, the ray sampling mechanisms, and the primitive organiza-
tion. Central to this framework is the development of differentiable versions
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of these rendering elements, allowing for effective gradient backpropagation
from the final rendering objectives. A detailed analysis of gradient character-
istics is performed to facilitate a stable and goal-oriented elements evolution.
Our extensive experiments demonstrate the large potential of evolutive
rendering models for enhancing the rendering performance across various
domains, including static and dynamic scene representations, generative
modeling, and texture mapping.
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1 INTRODUCTION
The field of computer graphics has undergone a remarkable rev-
olution with the advancement of differentiable rendering models
highlighted by representative works [Kerbl et al. 2023; Mildenhall
et al. 2020; Müller et al. 2022a]. Such models are essential for accu-
rate environment digitization and immersive XR experiences, and
are increasingly relevant across a diverse array of industries includ-
ing construction, entertainment, and robotics. It bridges the gap
between real-world data acquisition and digital visual representa-
tion. The versatility and applicability of differentiable rendering in
these domains underscore its significance as a transformative tool
in modern graphics and machine learning applications.
Despite these advancements, a fundamental challenge persists

in the development of rendering models: the reliance on one-fits-
all, heuristic, hand-defined rules. These heuristics, while beneficial
in offering a starting point for model design, often compromise
the expressiveness and adaptability of the models. They tend to
impose rigid constraints, limiting the capacity of these models to
adapt and evolve in response to diverse and dynamically changing
optimization state and rendering objectives.
In this work, we introduce Evolutive Rendering Models. The

ERM is designed to evolve autonomously towards more optimal
states, offering an alternative to traditional heuristic and rule-based
methods. This work focuses on three prevalent elements in scene
representation and rendering: (1) a gauge transformation [Zhan
et al. 2023], denoting the conversion between distinct measuring
systems, to perform space mapping to index radiance fields, (2) a
sampling mechanism to perform ray sampling for volume rendering,
and (3) a primitive organization in the space to perform point-based
rendering. Central to this approach is the employment of differen-
tiable version of above elements, which paves the way for a fully
learnable system, adaptively guided by gradient-based optimization.
Anchoring this innovative framework is a principled optimization
paradigm termed as relay learning mechanism, meticulously
devised through rigorous gradient analysis. This relay learning
mechanism ensures robust and stable evolution of the rendering
models across diverse test scenarios, marking a significant stride in
the field.
Aligned with the three rendering elements, we include several

concrete samples to demonstrate its potential applications: (1) Evo-
lutive Gauge Transformation: we develop a parametric mapping
technique between Euclidean 3D space and low-dimensional 2D
space [Chan et al. 2022; Fridovich-Keil et al. 2023; Zhan et al. 2023].
This technique employs learnable components for dynamic adap-
tation of the mapping process, facilitating flexible and expressive
scene representation. (2) Evolutive Ray Sampling: we propose a
gradient-guided sampling strategy to improve the efficiency of ray-
marching techniques. This strategy notably enhances reconstruction
quality in NeRF-based volumetric rendering [Müller et al. 2022a;
Sun et al. 2022], promoting the rendering efficiency and overall
quality in current methodologies. (3) Evolutive Primitive Organiza-
tion: in the realm of point-based rendering, our approach innovates
by incorporating a learnable component to optimize the densifi-
cation and pruning phases [Kerbl et al. 2023; Xu et al. 2022]. This

adaptation is responsive to the current optimization state, thus im-
proving both precision and efficiency. The practical applications of
this approach range from promoting performance of existing models
by incorporating evolutive rendering elements, to unlocking new
possibilities for tasks that were unattainable with existing models.
Our experiments are performed over a variety of representation
types (MLP-based, grid-based, and point-based models), as well as
different rendering types (volumetric rendering and splatting), high-
lighting the adaptability and broad applicability of our evolutive
rendering approach.

In summary, our key contributions are:
• Introduction of the Evolutive Rendering Model (ERM) for

autonomous evolution towards optimal rendering states;
• Integration of differentiable components as an alternative to

heuristic and rule-based elements, facilitating a fully learn-
able system;

• Establishing a relay learningmechanism, rigorously grounded
in gradient analysis, to facilitate robust and stable evolution
in a myriad of rendering applications.

• Demonstration of the superiority of ERM through concrete
examples within contemporary computer graphics, which
span over a variety of representation types and rendering
techniques.

2 RELATED WORK
Recent work has significantly advanced the field of scene repre-
sentation, particularly through the development of NeRF & 3DGS
[Kerbl et al. 2023; Mildenhall et al. 2020] and their various exten-
sions. These advancements have found widespread application in
numerous areas of vision and graphics, notably in view synthesis
[Fridovich-Keil et al. 2022; Lindell et al. 2021; Reiser et al. 2021;
Sun et al. 2022; Yu et al. 2021a], generative models [Chan et al.
2021; Niemeyer and Geiger 2021; Schwarz et al. 2020], and surface
reconstruction [Oechsle et al. 2021; Wang et al. 2021; Yariv et al.
2021].
In contrast to the aforementioned application works, our pro-

posed evolutive rendering models cater to the fundamental elements
in scene representation and rendering, including gauge transforma-
tion, ray sampling, and primitive organization.

2.1 Gauge Transformation
Under the context of neural rendering, gauge transformation de-
notes the mapping between two coordinate systems. This concept is
correlated with the prevailing paradigm of learning deformation for
dynamic modeling [Park et al. 2021; Peng et al. 2021; Pumarola et al.
2020; Tewari et al. 2022; Tretschk et al. 2021], which actually learns
a mapping within one coordinate system. A diverse array of gauge
transformations has been extensively investigated in neural fields,
serving various objectives like efficient rendering [Chan et al. 2022;
Chen et al. 2022; Müller et al. 2022a; Zhan et al. 2023]. A pre-defined
mapping function is usually employed as the gauge transformation.
A typical example is orthogonal mapping, which involves projecting
a 3D space onto 2D planes as in [Chan et al. 2022; Peng et al. 2020].
Expanding this concept, TensoRF [Chen et al. 2022] propels this
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Fig. 2. Evolutive Rendering Models covers three principal rendering elements: gauge transformation, ray sampling and primitive organization. All three
elements can be applied in volume rendering, while splatting only employs evolutive gauge transformation and primitive organization.

research forward for fast and efficient optimization by projecting
the 3D scene space into 2D planes and 1D vectors; Cao and Johnson
[2023]; Fridovich-Keil et al. [2023] propose to project 4D space onto
2D planes for dynamic modeling.

Concurrently, some studies also ventured into learning the gauge
transformation for specialized tasks within neural fields. NeuTex
[Xiang et al. 2021] and NeP [Ma et al. 2022], for instance, focus on
learning the mapping from 3D points to 2D texture spaces. Neu-
ral Gauge Fields [Zhan et al. 2023] generally explores the problem
of gauge transformation and its optimization. However, all above
works necessitate certain regularizations to facilitate stable opti-
mization, which is a cumbersome process and hinders it for practical
applications. In this work, we introduce a relay learning mechanism
which allows efficient optimization of gauge transformations with-
out any regularizations, unlocking its potential for various graphic
applications.

2.2 Ray Sampling
Ray sampling is pivotal in promoting the efficiency of volume render-
ing. The original NeRF [Mildenhall et al. 2020] employs a coarse-to-
fine sampling strategy, selecting points based on their contribution
to the final rendering.
However, the coarse sampling phase entails a cumbersome pro-

cess of querying radiance fields per point along a ray. To address this,
a series of work focuses on directly generating target samples for
a given ray. NeuSample [Fang et al. 2021] suggests that the coarse
stage can be substituted with a lightweight module parameterized by
an MLP. Similarly, DONeRF [Neff et al. 2021] and TermiNeRF [Piala
and Clark 2021] propose replacing vanilla NeRF’s coarse sampling
with a sampling network that predicts object surface depths. Yet,
these methods hinge on the availability of depth maps, constraining
their practical utility. In scenarios without depth priors, AdaNeRF
[Kurz et al. 2022] introduces a sampler network that converts rays
into discrete probabilities, albeit involving a complex optimization

procedure. ProNeRF [Bello et al. 2023] opts for estimating sampled
points in a coarse-to-fine manner, supplemented by multiview pro-
jection to capture geometric information. Overall, above approach,
by sidestepping the structure of radiance fields, is prone to issues
like geometry collapse and overfitting.

Conversely, another research trajectory maintains the coarse-to-
fine sampling paradigm. NeRF in Detail [Arandjelović and Zisser-
man 2021] conducts initial coarse sampling of a ray, followed by a
network that refines target points from the coarsely sampled points’
features. MipNeRF 360 [Barron et al. 2022] suggests distilling infor-
mation from the density field into a sampling field for ray sampling.
However, the distillation loss employed is based on heuristics, pre-
supposing an alignment between the sampling and density fields.
Rather than relying on heuristic designs, RVS [Morozov et al. 2023]
enables the gradient from the training objective to optimize the
sampling field. Nevertheless, this method is primarily applicable to
MLP-based radiance fields. In our work, we demonstrate the utility
of training objective gradients for general representation types of
sampling fields, employing a straightforward yet efficient strategy
known as relay learning mechanism for optimization.

2.3 Point-based rendering
While neural radiance fields (NeRF) [Mildenhall et al. 2020] are
prevalent, as highlighted in prior work, point-based primitives
offer an efficient alternative, leveraging GPU hardware rasteriza-
tion [Pineda 1988]. Traditional single-pixel point rendering faces
challenges like holes in sparse point clouds [Catmull 1974; Schaufler
1998], addressed in part by convolutional neural networks [Aliev
et al. 2020]. However, these methods struggle with view consis-
tency and generalization. The rise of NeRF has led to techniques
like Point-NeRF [Xu et al. 2022], combining points with volumetric
rendering, albeit at a loss of rasterization efficiency. Notably, EWA
splatting [Zwicker et al. 2002] interprets point rendering through
a signal reconstruction lens, employing Gaussian reconstruction
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kernels to reconstruct continuous signals from discrete samples.
Recent advancements have focused on integrating differentiability
into point-based rasterizers [Kerbl et al. 2023; Lassner and Zollhofer
2021; Müller et al. 2022b; Wiles et al. 2020; Yifan et al. 2019]. Notably,
Kerbl et al. have developed an efficient differentiable point rasterizer,
synergizing EWA Splatting with volume rendering. This innova-
tion facilitates both rapid scene reconstruction and photorealistic
novel-view synthesis in real-time.
Optimizing point-based inverse rendering models crucially de-

pends on the organization of primitives. A common strategy in-
volves periodic resampling through splitting and pruning, essen-
tial for optimization stability [Kerbl et al. 2023; Zheng et al. 2023].
However, current splitting and pruning strategies are heuristic and
not optimized concurrently. PixelsSplat [Charatan et al. 2023] cri-
tiques these strategies, proposing a differentiable parameterization
of Gaussian primitives less prone to local minima. In our work,
we introduce an innovative primitive organization procedure, inte-
grating differentiable splitting and pruning within an evolutionary
optimization framework.

3 METHODOLOGY
This section describes the methodology underlying the proposed
Evolutive Rendering Model (ERM). As illustrated in Fig. 2, our frame-
work covers three principal rendering elements including the gauge
transformation, the ray sampling, and the primitive organization.
The gauge transformation can be performed to transform discrete
points to another coordinate system to index scene representation
as shown in Fig. 3. Notably, ray sampling (in volume rendering)
and primitive organization (in splatting) share essentially the same
key operation in rendering pipelines, i.e., yielding desired discrete
positions in the continuous space to perform rendering. The unified
formulation of volume rendering and point-based (or splat-based)
rendering can be written as:

𝐶 =
∑︁
𝑖∈N

𝑐𝑖𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ), (1)

where𝐶 is the color of a image pixel, 𝑐𝑖 is the color of discrete point
in the space. In volume rendering, 𝛼𝑖 can be computed according
to the point density 𝜎 as 𝛼𝑖 = (1 − 𝑒𝑥𝑝 (−𝜎𝑖𝛿𝑖 )); in point-based
rendering, 𝛼𝑖 is given by evaluating a 2D Gaussian according to its
covariance and per-point opacity.
As two different lines of research, ray sampling and primitive

organization are incompatible in rendering models for most cases
1. For instance, volume rendering models can only employ gauge
transformation and ray sampling, while the point-based render-
ing models can only employ gauge transformation and primitive
organization.

1PointNeRF [Xu et al. 2022] is a special case which can employs both ray sampling and
primitive organization.

Volume Rendering

Ray
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Point-based Rendering

Ray

Ray

Ray

Ray

Gauge Transformation

Fig. 3. A conceptual illustration of rendering elements, including ray sam-
pling in volume rendering, primitive organization in point-based rendering,
and gauge transformations. Volumetric and point-based rendering can be
performed in a unified manner: accumulating or blending discrete points
relevant to the given ray.

3.1 Evolutive Gauge Transformation
Generally, a gauge defines a measuring system, e.g., pressure gauge
and temperature gauge. In the context of neural rendering, a measur-
ing system (i.e., gauge) is a specification of parameters to index a ra-
diance field, e.g., 3D Cartesian coordinate in original NeRF [Milden-
hall et al. 2020], triplane in EG3D [Chan et al. 2022], plane & vector
in TensoRF [Chen et al. 2022]. The transformation between different
measuring systems is referred as Gauge Transformation. In radi-
ance fields, gauge transformations are defined as the transformation
from the original space to another gauge system to index radiance
fields. This additional transform could introduce certain bonus to
the rendering, e.g., low memory cost, high rendering quality, or
explicit texture, depending on the purpose of the model.

Typically, the gauge transformation is performed via a pre-defined
function, e.g., an orthogonal mapping in 3D. This pre-defined func-
tion is a general design for various scenes, which means it is not
necessarily the best choice for a specific target scene. Moreover, it is
a non-trivial task to manually design an optimal gauge transforma-
tion which aligns best with the complex training objective. We thus
introduce the concept of Evolutive Gauge Transformation (EGT)
to optimize a desired transformation directly guided by the final
training objective.
The gauge transformation can be parameterized by an MLP-

network & feature grid, or per-point property for the case of point-
based rendering. For a point 𝑥 ∈ R3 in the original space, the evolu-
tive gauge transformation outputs the corresponding coordinate in
the target space. The output coordinate can be the absolute value
or a residual offset. On the other hand, the efficient optimization of
EGT is a challenging task, previous works [Zhan et al. 2023] regu-
larize the optimization process for implicit fields, which however is
too heavy for practical applications. We thus introduce optimization
strategies without clearly slowing down the training speed.
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Fig. 4. Motivation of evolutive gauge transformation. In this example, in-
stead of mapping the 3D euclidean space to the 2D plane by orthogonal
projection (left), we learn a more flexible and adaptive mapping (right).
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Fig. 5. The illustration of predefined (upper) and evolutive (lower) gauge
transformation. We implement the evolutive transformation by predicting
an offset to the pre-defined transformation.

Generally, the gradient is unstable at the initial training stage,
which is especially the case for grid-based representation as ana-
lyzed in Sec. 4. We thus introduce a deferred learning strategy for
stable optimization of gauge transformation. As shown in Fig. 5,
we train the model with a pre-defined gauge transformation (e.g. ,
orthogonal projection) at the initial stage. The gradient will become
more stable when a coarse scene representation is learned. Thus,
for the later stage, we replace the predefined gauge transformation
with the learnable counterpart, and jointly optimize it with the
scene representation. The training strategy can help to stabilize the
training and accelerate the convergence for general representations,
especially for grid-based representation.

3.2 Evolutive Ray Sampling
In volume rendering process, densely evaluating the radiance field
network at query points along each camera ray is inefficient, as only
few regions contribute to the rendered image. Thus, a coarse-to-fine
sampling strategy [Mildenhall et al. 2020] is usually employed to
increase rendering efficiency by allocating samples proportionally to
their expected effect on the final rendering. To achieve coarse-to-fine
sampling, a sampling field is included in the rendering pipeline. At
first, a set of points are uniformly sampled along a ray [𝑡1, · · · , 𝑡𝑁 ],
to evaluate the sampling field. For piecewise constant approximation,
point density within each bin 𝑡𝑖 ≤ 𝑡𝑖 ≤ 𝑡𝑖+1 are approximated
with constant density of 𝜎𝑖 ). The evaluation of [𝑡1, · · · , 𝑡𝑁 ] yields a
discrete distribution of density along the ray, which gives the color
weights𝑤𝑖 of different point as:

𝑤𝑖 = 𝛼𝑖

𝑖−1∏
𝑗=1

(1 − 𝛼 𝑗 ) 𝛼𝑖 = (1 − 𝑒𝑥𝑝 (−𝜎𝑖𝛿𝑖 )) (2)

The color weights are normalized as 𝑤𝑖 = 𝑤𝑖/∑𝑁𝑐
𝑗=1 𝑤𝑗 to produce

a piecewise-constant probability density function (PDF) along the
ray. According to the PDF and corresponding CDF, a second set of
locations are sampled from this distribution using inverse transform
sampling, which allocates more samples to more visible regions.

To optimize the sampling fields, previous work either treat it as a
radiance field trained with photometric loss or distilling the density
knowledge from the radiance fields as shown in Fig. 7. Thus, all
of them are making a heuristic assumption: the best of sampling
fields should be aligned with the density fields. However, the ob-
jective of sampling field is to select the best set of points for the
evaluation of radiance field, while the density field aims to yield the
best rendering results. Thus, previous heuristic assumption will bias
the optimization objective of sampling fields. On the other hand,
it is non-trivial to manually design the training objective for the
sampling fields, which should be determined by the radiance fields
as sampling fields serve for radiance fields. To this end, we propose
to backpropagate gradients from the radiance fields (i.e. , rendering
loss) to optimize the sampling field directly, eliminating the need
to heuristically design auxiliary loss supervision. However, for this
case of piecewise constant approximation, the CDF is a discontinu-
ous step function, which hinders the gradient backpropagation in
the sampling process.

Density

𝑡! 𝑡"Interval

Piecewise Constant Density
Density

𝑡! 𝑡"Interval

Piecewise Linear Density

Non-differentiable
Inverse Transform Sampling

Differentiable
Inverse Transform Sampling

Fig. 6. Differentiable sampling with piecewise linear approximation.

To achieve differentiable sampling, we adopt a piecewise linear
density to approximate the opacity [Morozov et al. 2023; Uy et al.
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2023], as illustrated in Fig. 6. Specifically, we compute 𝜎 (𝑡), 𝑡 ∈
[𝑡𝑖 , 𝑡𝑖+1] by interpolating the values between the interval points 𝑡𝑖
and 𝑡𝑖+1:

𝜎 (𝑡 ′𝑖 ) = 𝜎𝑖+1
𝑡𝑖+1 − 𝑡

𝑡𝑖+1 − 𝑡𝑖
+ 𝜎𝑖

𝑡 − 𝑡𝑖

𝑡𝑖+1 − 𝑡𝑖
. (3)

Given these piecewise linear approximations of 𝜎𝑖 , 𝑖 ∈ [1, 𝑁 ], we
can yield a continuous PDF and CDF according to Eq. (2). With the
continuous CDF, the sampling process with inverse transform is
differentiable function with respect to the density field 𝜎𝑖 and can
back-propagate the gradients to optimize the sampling fields.

Sampling Field Radiance Field

SamplingDistribution

Heuristic Ray Sampling

Evolutive Ray Sampling

Radiance Field

Differentiable
Sampling

Sampling Field

Distribution

Ray

Ray

Fig. 7. The illustration of pre-defined ray sampling and evolutive ray sam-
pling.

This differentiable sampling algorithm can be smoothly integrated
into the hierarchical sampling scheme originally proposed in NeRF.
Here we do not change the final color approximation, utilizing
the original one, but modify the way the coarse density network
is trained. The method we introduce consists of two changes to
the original scheme. Firstly, we replace sampling from piecewise-
constant PDF along the ray defined by weights𝑤𝑖 with differentiable
sampling algorithm that uses piecewise linear approximation of 𝜎𝒓
and generates samples from 𝑝𝑟 (𝑡) using inverse CDF. Secondly, we
remove the auxiliary reconstruction loss imposed on the coarse
network. Instead, we propagate gradients through sampling. This
way, we eliminate the need for auxiliary coarse network losses and
train the network to solve the actual task of our interest: picking
the best points for evaluation of the fine network. All components
of the model are trained together end-to-end from scratch.

3.3 Evolutive Primitive Organization
Point-based representations employ a set of geometric primitives
(e.g. neural points in Point-NeRF [Xu et al. 2022], Gaussians splats
in 3D-GS [Kerbl et al. 2023]) for scene rendering. These primitives
compose of attributes that encode the geometry and radiance field,
which can be rendered and optimized via volume render or ras-
terization operation. They are usually initialized from SFM and
optimizing their attributes directly via gradient descent suffers from

local minima. Previous techniques try to alleviate this issue in per-
scene fitting by employing pre-defined optimization heuristics, such
as point growing and pruning in Point-NeRF and Adaptive Den-
sity Control in 3D-GS. However, these heuristic operations can be
sub-optimal because they are non-differentiable and may misalign
with final training objective. Furthermore, their non-differentiable
nature also impedes their applicability in cross-scene generalizable
settings. We thus propose primitive organization evolution, where
scene primitives will be implicitly grown and split during training
while maintaining gradient flow directly from training objective.
Our proposed approach not only overcomes the challenges posed
by non-differentiability but also facilitates the extension of cur-
rent techniques to feed-forward generalizable settings, which we
will elaborate in Section 6. An illustration of evolutive primitive
organization is shown in Fig. 8.
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Fig. 8. An illustration of evolutive primitive organization. In fig. (a), we
elucidate evolutive primitive growth where we consider two fundamental
forms of primitive growth distribution: spherical distribution growth has
a pre-difined growth length and learn growth direction probability; radial
distribution growth assums known growth direction and learn growth length
probability. In fig. (b), we show evolutive primitive split, where a split shift
term is learned to decide the location of newly-split primitives.

We denote the position of existing scene primitives as 𝜇𝑘 ∈ R3.
When primitive organization evolve to grow new primitives (eg. new
primitives growth in under-reconstructed region), we learn a grown
term 𝛿𝜇𝑘 = 𝑡𝑑 ∈ R3 for the emergent primitives, where 𝑑 ∈ R3 is
the direction of grown term and 𝑡 ∈ R is its length. The location 𝜇′

𝑘
of new primitives will be 𝜇𝑘 +𝛿𝜇𝑘 . The newly-grown primitives will
be rendered during each iteration, which allows the grown term to
be optimized by the final training objective throughout whole opti-
mization process. Unfortunately, we find directly regressing grown
term makes the training unstable, which is susceptible to local min-
ima. Instead, we consider two most fundamental forms of primitive
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growing distribution: spherical distribution and radial distribution,
elucidated in Fig. 8a. In the context of spherical distribution growth,
nascent primitives expand along a sphere enveloping the original
primitives, with the growth length 𝑡 predefined and growth direc-
tion 𝑑 being learned. Conversely, in radial distribution growth, the
grow direction is predefined, while the extent of growth 𝑡 along this
direction will be learned. The combination of these two primary
grow distribution actually spans the entirety of the potential growth
space.
To stabilize the learning process, we choose to learn these two

forms of distribution in discrete space. In more details, when to
learn the spherical distribution of primitive growth, we first pre-
define a set of 𝑁 uniformly distributed potential growing directions
{𝑑1, 𝑑2, ..., 𝑑𝑁 }, and each emergent primitive will learn a probability
distribution of grow directions 𝑄 ∈ R𝑁 , where its i-th element 𝑞𝑖
represent the probability of growing along direction 𝑑𝑖 . The actu-
ally grow direction 𝑑 is chosen to be the direction with maximum
probability:

𝑑 = 𝑑𝑖 , 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑄) (4)

As Argmax operations is non-differentiable, we apply reparame-
terization trick by replacing Argmax operation with Softmax in
gradient back-propagation. The pseudo code of the forward & back-
ward propagation of the grow primitives is given in Algorithm 1.
Similarly, for its counterpart of radial distribution growth, given
grow direction 𝑑 , we learn the growth distance by predicting the
probability that new primitive will exist at distance 𝑡 along the di-
rection. We discretize the extention along the direction into 𝑁 bins
with distance {𝑡1, 𝑡2, ..., 𝑡𝑁 }. And we learn a discrete grow distance
probability 𝑄 ∈ R𝑁 , where 𝑞𝑖 represent the probability of growing
with distance 𝑡𝑖 . The pseudo code is also included in Algorithm
1. Please note that although these two primary grow distribution
forms can span the entire potential growth space, experimentally in
most cases we only need to employ one of them depending on the
applications.

Algorithm 1 Pseudo-code of forward & backward propagation in
primitive growth spherical/radial distribution optimizatation
Input:
potential grow directions 𝐷 = {𝑑1, 𝑑2, ..., 𝑑𝑁 }/potential grow dis-
tance 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑁 }
grow direction/distance probability 𝑄 = [𝑝1, 𝑝2, ..., 𝑝𝑁 ]
Forward propagation:

1. index = Argmax(𝑄)
2. index-hard = One-Hot(index)
3. grow direction 𝑑 = Matmul(index-hard, 𝐷)/grow distance 𝑡

= Matmul(index-hard, 𝑇 )
Backward propagation:
1. index-soft = Softmax(𝑄)
2. grow direction 𝑑 = Matmul(index-soft, 𝐷)/grow distance 𝑡 =

Matmul(index-soft, 𝑇 )

In addition to learned primitive growth, there are circumstances
that require splitting the primitives. For example, 3D-GS propose a
splitting operation that splits large primitives in over-reconstructed

region into two smaller ones by dividing their scale with a pre-
defined scaling factor of 1.6, and initialize their location by using
the original 3DGaussian as a PDF for sampling. This whole sampling
process is no-differentiable and the splitting operation won’t directly
align with optimization objective. Thus we additionally learn a
differentiable splitting strategy by predicting the new position of
split primitive (illustrated in Fig. 8b). Similarly to learned growing
operation, we learn a split mean shift 𝛿𝜇 and the position of two
newly split primitive will be 𝜇 + 𝛿𝜇 and 𝜇 − 𝛿𝜇 separably. The new
primitive will participate in rendering process within each training
iteration, allowing gradient flow to update the shift term.

4 OPTIMIZATION
For clarity, we denote the gauge transformation, the ray sampling,
and the primitive organization asT ,S, andO, respectively. The opti-
mization of above rendering elements relies on the gradients derived
from rendering models. There are two main paradigms for render-
ing, including (1) sampling discrete points in the space to perform
volume rendering (via point accumulation), (2) organizing discrete
primitives in the space to perform splat-based rendering (via 𝛼-
blending). Given ui = [𝑐𝑖 , 𝜎𝑖 ] and the unified formulation of volume
rendering and point-based rendering 𝐶 =

∑
𝑖∈N 𝑐𝑖𝛼𝑖

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ),

the function of per-point color contribution in can be written as
𝐺 (ui) = 𝑐𝑖𝛼𝑖

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ). Note that 𝐺 is a differentiable function

without learnable parameters. In the next subsections, we will dis-
cuss the gradient characteristics for element optimization in volume
rendering and point-based rendering, respectively.

4.1 Gradient in Volume Rendering
Typical volume rendering is associated with a continuous repre-
sentation of the scene, necessitating point sampling mechanism
S to yield discrete samples (with optional gauge transformation
T ). For clarity, we denote the joint process of ray sampling and
gauge transformation as ST (𝑟 ;𝚯𝑠𝑡 ), where 𝚯𝑠𝑡 and 𝑟 are the ray
sampling & gauge transformation parameters and a given ray. Then,
the process to yield a discrete point 𝑝𝑖 along ray 𝑟 can be written as
𝑝 = ST (𝑟 ;𝚯𝑠𝑡 ). The discrete point 𝑝 is further used to query the
scene representation to yield color & density u = [𝑐, 𝜎] = 𝑓 (𝑝 ;𝚯𝑓 ),
where 𝑓 and 𝚯𝑓 are the representation function and parameters,
e.g., MLP in implicit neural fields or feature grid in explicit neural
fields. Thus, the color contribution from 𝑝 can be formulated as:

𝐺 (u) = 𝐺 (𝑓 (𝑝;𝚯𝑓 )) = 𝐺 (𝑓 (ST (𝑟 ;𝚯𝑠𝑡 );𝚯𝑓 )) . (5)

The gradient of J of the color contribution with respect to 𝚯𝑠𝑡 can
be derived as:

J =
𝜕𝐺 (u)
𝜕u

𝜕𝑓 (𝑝;𝚯𝑓 )
𝜕𝑝

𝜕ST (𝑟 ;𝚯𝑠𝑡 )
𝜕𝚯𝑠𝑡

. (6)

As the gradient term 𝜕𝐺 (u)
𝜕u is obviously stable, the optimization

depends on the terms 𝑓 and ST which will be analyzed according
to their parameterization types in ensuing paragraphs.

4.1.1 Explicit Fields. For this case, 𝑓 and ST are parameterized by
an explicit representation, like a feature grid. Considering the term
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𝜕𝑓 (𝑝 ;𝚯𝑓 )
𝜕𝑝 , 𝑓 can be written as an interpolation function:

𝑓 (𝑝;𝚯𝑓 ) =
2𝑑∑︁
𝑖=1

𝑤𝑖 ·ℎ(𝑔𝑖 (𝑝);𝚯𝑓 ), 𝑤𝑖 =

𝑑∏
𝑗=1

(
1 − |𝑝 − g𝑖 (𝑝) | 𝑗

)
, (7)

where 𝑔𝑖 (𝑝) denotes corner 𝑖 of the grid in which 𝑝 is located,
ℎ(𝑔𝑖 (𝑝);𝚯𝑓 ) outputs the feature of grid corner 𝑔𝑖 (𝑝), 𝑤𝑖 denotes
the 𝑑-linear weight defined by the relative position of 𝑝 in the grid,
index 𝑗 indicates the 𝑗-th dimension in the vector. The gradient of
the interpolated feature vector 𝑓 (𝑝) with respect to the 𝑝 can be
derived using the chain-rule as follows:

𝜕𝑓 (𝑝;𝚯𝑓 )
𝜕𝑝

=

2𝑑∑︁
𝑖=1

ℎ(𝑔𝑖 (𝑝);𝚯𝑓 ) ·
𝜕𝑤𝑖

𝜕𝑝
, (8)

where ℎ(𝑔𝑖 (𝑝);𝚯𝑓 is not differentiable with respect to 𝑝 . Consider-
ing the 𝑘-th dimension of 𝑝 , we have:

𝜕𝑤𝑖

𝜕𝑝𝑘
= sign

(
|𝑔𝑖 (𝑝) − 𝑝 |𝑘

)
·
∏
𝑗≠𝑘

(
1 − |𝑝 − 𝑔𝑖 (𝑝) | 𝑗

)
. (9)

Thus, the gradient 𝜕𝑓 (𝚯𝑓 ,𝑝 )
𝜕𝑝 is the weighted sum of the coordinates

corresponding to the nearby corners of 𝑝 . However, sign
(
|c𝑖 (x)−x|𝑘

)
is not a continuous function, which means the gradient 𝜕𝑤𝑖

𝜕𝑝𝑘
tends

to flip at the corners.
Similarly, for the term 𝜕ST(𝑟 ;𝚯𝑠𝑡 )

𝜕𝚯𝑠𝑡
where ST is parameterized

by feature grid, we can derive:

𝜕ST (𝑟 ;𝚯𝑠𝑡 )
𝜕𝚯𝑠𝑡

=

2𝑑∑︁
𝑖=1

𝑤𝑖 ·
𝜕ℎ(𝑔𝑖 (𝑟 );𝚯𝑠𝑡 )

𝜕𝚯𝑠𝑡
. (10)

For a corner 𝑖 , 𝑤𝑖 · 𝜕ℎ (𝑔𝑖 (𝑟 ) ;𝚯𝑠𝑡 )
𝜕𝚯𝑠𝑡

is a constant value 𝑤𝑖 . Thus, the

gradient in 𝜕ST(𝑟 ;𝚯𝑠𝑡 )
𝜕𝚯𝑠𝑡

is inherently stable.

Overall, the oscillating gradient 𝜕𝑓 (𝑝 ;𝚯𝑓 )
𝜕𝑝 will severely preclude

the optimization process, leading to slow convergence and local
minima.

4.1.2 Implicit Fields. Generally, implicit fields provide smooth and
global gradients as all points are querying the full MLP. How-
ever, to encode high frequency information in an MLP, a posi-
tional encoding is usually applied to 𝑧𝑖 before feeding into MLP.
Thus, 𝑓 will be a composition of 𝑓 (𝑝) = 𝑓 ′ ◦ 𝛾 (𝑝), where 𝛾𝑘 (𝑝) =[
cos(2𝑘𝜋𝑝), sin(2𝑘𝜋𝑝)

]
. As shown in Lin et al. [2021], the posi-

tional encoding will amplify the gradient exponentially, which leads
to unstable training.

4.2 Gradient in Point-based Rendering
In contrast to volume rendering, point-based rendering works with
discrete representations directly, which requires a primitive orga-
nization O (with optional gauge transformation T ). For clarity,
we denote the joint process of primitive organization and gauge
transformation as OT (𝑝;𝚯𝑜𝑡 ), where 𝚯𝑜𝑡 and 𝑝 are the primitive
organization & gauge transformation parameters and a certain point.
With an initialized discrete point 𝑝 , the process to yield a new dis-
crete point 𝑝′ can be written as OT (𝑝;𝚯𝑜𝑡 ) = 𝑝′. To this end, the

color contribution from this point can be formulated as

𝐺 (𝑝′, 𝑟 ) = 𝐺 (OT (𝑝;𝚯𝑜𝑡 ); 𝑟 ), (11)

where 𝐺 is the splat-based rendering function, 𝑟 is the target ray.
Compared with the case of volume rendering in eq. (5), there is no
representation function 𝑓 in point-based rendering, which simplifies
the gradient analysis. Then the gradient J of the color contribution
with respect to 𝚯𝑜𝑡 can be derived as:

J =
𝜕𝐺 (𝑝′, 𝑟 )
𝜕𝚯𝑜𝑡

=
𝜕𝐺 (𝑝′, 𝑟 )

𝜕𝑝′
𝜕OT (𝑝;𝚯𝑜𝑡 )

𝜕𝚯𝑜𝑡
. (12)

Notably, the gradient 𝜕𝐺 (𝑝′,𝑟 )
𝜕𝚯𝑜𝑡

has been carefully handled in [Kerbl
et al. 2023; Yifan et al. 2019] to achieve stable optimization. For
the term 𝜕OT(𝑝 ;𝚯𝑜𝑡 )

𝜕𝚯𝑜𝑡
, its optimization (or gradient characteristic)

depends on the parameterization types of OT .
The cases of grid-based and MLP-based parameterization have

been analyzed in Sec. 4.1.1. Notably, the parameterization of OT can
actually be discarded for point-based rendering, which means the
parameters of OT can be simply saved as additional properties of
discrete points. For the case without parameterization, the gradient
in eq. (12) is stable as 𝜕OT(𝑝 ;𝚯𝑜𝑡 )

𝜕𝚯𝑜𝑡
is a constant with respect to 𝚯𝑜𝑡 .

Gauge
Transformation

Ray Sampling

Primitive
Organization

Relay

Heuristic Design Gradient-based
Evolution

Orthogonal
Projection

Distilling
Loss

Density
Control

Gradient from
Final Objective

Initial Stage Later Stage

Fig. 9. An illustration of relay learning mechanism. At the initial stage,
the optimization is performed with heuristically designed elements, e.g.,
orthogonal projection for transformation, distilling loss for learning ray
sampling, density control [Kerbl et al. 2023] for primitive organization. After
certain iterations, the optimization is relayed to the gradient-based elements
evolution.

4.3 Relay Learning Mechanism
Overall, we observe the consistent gradient problem (e.g. , fluctua-
tion, large value), which are especially severe at the initial training
stage, and will became smoother as the training goes. Motivated
by our derivation and observation, we introduce a relay learning
mechanism to facilitate the training process and avoid local min-
ima when optimizing the rendering elements as shown in Fig. 9.
Specifically, heuristically designed elements are employed at the
initial training stage to achieve stable training and approximate the
optimal solution, followed by the evolutive elements for accurate
optimization towards the optimal solution. This mechanism ensures
that the optimization will not suffer from the gradient problem at
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Models Setting Time PSNR↑ SSIM↑
Static Modeling on Synthetic NeRF

PlenOctrees N/A ∼15 hr 31.71 0.958
Plenoxels N/A 11.4 min 31.71 0.958
DVGO N/A 15.0 min 31.95 0.957
Mip-NeRF N/A 2.89 hr 33.06 0.960
TensoRF 64 × 64 8.94 min 27.58 0.934
TensoRF+EGT 64 × 64 9.43 min 28.98 0.941
TensoRF 128 × 128 10.9 min 31.18 0.952
TensoRF+EGT 128 × 128 11.3 min 31.82 0.954
TensoRF 256 × 256 12.5 min 33.01 0.963
TensoRF+EGT 256 × 256 13.1 min 33.38 0.964

Dynamic Modeling on D-NeRF
KPlanes 64 × 64 26.7 min 28.49 0.940
KPlanes+EGT 64 × 64 27.2 min 29.37 0.942
KPlanes 128 × 128 30.9 min 30.62 0.946
KPlanes+EGT 128 × 128 31.2 min 31.01 0.946
KPlanes 256 × 256 36.2 min 31.03 0.946
KPlanes+EGT 256 × 256 36.6 min 31.31 0.947
Models Setting Time FID↓

Generative Modeling on FFHQ
EG3D 256 × 256 46 hr 7.051
EG3D+EGT 256 × 256 54 hr 6.546

Table 1. Evaluation of our evolutive gauge transformation at various tasks
including static scene modeling, dynamic modeling, and generative mod-
eling. TensoRF, KPlanes, and EG3D serve as the base model respectively.
The setting indicates the size of feature planes. The plane size for modeling
gauge transformation is kept the same as the base model by default.

initial stage, and can effectively utilize the smooth gradient at later
stages. By default, we perform the optimization relay around the
first 10% steps.

5 EXPERIMENTAL EVALUATION
We evaluate the effectiveness of ERM by replacing the heuristic
design in existing rendering models with our evolutive elements.

5.1 Evolutive Gauge Transformation
To validate the effectiveness of our evolutive gauge transformation
(EGT), we replace the orthogonal projection in TensoRF, KPlanes,
and EG3D with our learnable mapping, to perform static scene
modeling, dynamic modeling, and generative modeling, respectively.

5.1.1 Static Scene Modeling. We first evaluate our evolutive gauge
transformation on the static scenes from the Synthetic NeRF dataset
[Mildenhall et al. 2020]. Here, we use TensoRF [Chen et al. 2022] as
the baseline model, with varying plane sizes (64×64, 128×128, 256×
256) and a fixed plane dimension of 64. For the gauge transformation,
we adopt the same model structure and plane size as the base model.
The model is trained with a pre-defined orthogonal projection for
the first 3000 steps, and subsequently the optimization transitions

into using our proposed evolutive gauge transformation (EGT) to
learn a flexible mapping. Intuitively, with the orthogonal mapping
as the initizliation, we only learn a residual transformation term as
illustrated in Fig. 5.

As shown in Table 1, the inclusion of EGT leads to a clear gain in
the rendering quality of TensoRF, while only slightly reducing the
training speed. Notably, the performance gain will be more distinct
with decreasing feature plane sizes. We conjecture that the gradient
oscillation around the grid corner will be mitigated with a small
plane size, which leads to more stable optimization as analyzed in
Sec. 4.1.1.
Besides, we also ablate the effect of relay at different steps as

shown in Fig. 11. We observe there is clear performance drop when
relay is performed at early stage. On the other hand, relay at very
later stage also lead to marginal performance gain. It is proved that
relay at 3000 strikes a good balance to yield superior performance.

5.1.2 Dynamic Scene Modeling. For dynamic scene modeling on
the D-NeRF dataset [Pumarola et al. 2020], we set KPlanes as the
base model with varying plane sizes (64 × 64, 128 × 128, 256 × 256)
and a fixed feature dimension of 16 2. The EGT employs the same
model structure and plane size as the base model. As shown in Table
1, consistent performance improvements can be observed with the
integration of EGT.

5.1.3 Generative Scene Modeling. EG3D [Chan et al. 2022] serves as
the base model for 3D generative modeling. Specifically, the Triplane
structure and plane size (256 × 256) in EG3D is also adopted for
the gauge transformation. The Triplane for gauge transformation is
generated from the latent code with the generator in StyleGAN2.
The training is performed with predefined orthogonal projection at
the initial stage (10% of total iteration).
As shown in Table 1, the FID of the generated images can be

improved by 0.505, while the training time will be increased by 8
hours as generating additional Triplanes with StyleGAN2 for the
gauge transformation is a cumbersome process.

5.2 Evolutive Ray Sampling
We evaluate the performance of ERS on static scene modeling and
dynamic scene modeling.

5.2.1 Static Scene Sampling. We perform experiments on the Syn-
thetic NeRF dataset with NeRF and KPlanes as the base models. The
plane size in KPlanes is set as 256 with a feature dimension of 32.
The sampling field adopts a plane size of 64 × 64 with a feature
dimension of 8. Specifically, both NeRF and KPlanes are equipped
with sampling fields to perform coarse-to-fine sampling. To train
the sampling fields, NeRF and KPlanes adopt a recontruction loss
and distillation loss, respectively. NeRF+ERS and KPlanes+ERS re-
move these reconstruction losses and the distillation loss, as they
can directly train the sampling fields by propagating gradient from
the final training loss through the sampling process.

As shown in Table 2, the rendering quality and training time are
improved consistently with the inclusion of ERS. We also ablate

2We adopt smaller feature plane size and dimension as we find the original KPlanes
setting for D-NeRF is redundant.
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TensoRF
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TensoRF
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Fig. 10. Comparison between renderings with the inclusion of EGT under different plane size.

Sampling Synthetic NeRF
Models

Coarse Final Time↓ PSNR↑ SSIM↑
NeRF 32 64 8.81 hr 28.78 0.933
NeRF+ERS 32 64 8.43 hr 30.29 0.941
NeRF 64 64 10.5 hr 29.76 0.941
NeRF+ERS 64 64 10.1 hr 30.90 0.946
NeRF 96 64 12.0 hr 30.79 0.946
NeRF+ERS 96 64 11.6 hr 31.21 0.947

Sampling Synthetic NeRF D-NeRF
Models

Coarse Final Time↓ PSNR↑ SSIM↑ Time↓ PSNR↑ SSIM↑
KPlanes 32 48 27 min 27.93 0.950 41 min 29.13 0.962
KPlanes+ERS 32 48 26 min 30.70 0.957 39 min 30.21 0.964
KPlanes 64 48 28 min 30.02 0.958 39 min 30.49 0.967
KPlanes+ERS 64 48 28 min 31.85 0.961 41 min 30.95 0.969
KPlanes 96 48 30 min 31.84 0.961 42 min 31.03 0.969
KPlanes+ERS 96 48 30 min 32.29 0.962 42 min 31.29 0.970

Table 2. The rendering performance by integrating evolutive ray sampling. ‘Coarse’ and ‘Final’ denote the number of points for sampling fields and radiance
fields.

0 2000 4000 6000 8000 10000 12000 14000
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Relay at 3000

Fig. 11. Ablation study of the proposed relay learning mechanism. Relay at
3000 steps is our default setting.

the effect of different number of coarse sampling ppoints, and ob-
serve that the ERS is more robust to the number of sampling points
compared with the previous heuristic design. Notably, the NeRF
training speed is also slightly improved as rendering operations in
the reconstruction loss are reduced.

We also visualize and compare the learned sampling fields in Fig.
12. Specifically, we take three 2D orthogonal cross-sections (i.e. , YZ,
XZ, and XY section) of the volume, which are uniformly sampled
to query the sampling fields to get color and density. As shown in
Fig. 12, the learned sampling fields with heuristic design are not
well aligned with the scene geometry & surface as it is trained
with reconstruction loss. As the comparison, the sampling fields
learned with ERS tends to be smoothly distributed around scene
surface. We conjecture this geometry slack of sampling fields is

more beneficial for flexible volume rendering as there is no harsh
geometry constraint.

5.2.2 Dynamic Scene Sampling. We validate the effectiveness of
ERSwith KPlanes as the base model on D-NeRF dataset. The KPlanes
and sampling fields settings are similar to case of static scene mod-
eling, just including an additional time dimension of size 50 for
KPlanes and 25 for sampling fields. As shown in Table 2, the perfor-
mance gain is also consistent with the inclusion of ERS.

5.3 Evolutive Primitive Organization
To evaluate the effectiveness of evolutive primitive organization
(EPO), we test our component on both 3D Gaussian Splatting (3D-
GS) framework and point-NeRF (P-NeRF) framework on the task of
single scene radiance field rendering.

5.3.1 Evolutive 3D Gaussian Splatting. For 3D-GS, we regard each
Gaussian as scene primitive and both the growing and splitting
process will be learned during the whole optimization process. The
original 3D-GS method will directly clone the Gaussians during
the growing operation and does not have differentiable sampling
and splitting operations. In our learned growing process, we will
learn a position term 𝛿𝜇 that defines the posituion of the newly split
Gaussians. To do that, we apply spherical distribution growth to
learn growth directions of new Gaussians. We implement the grown
probability 𝑄 as an attribute of existing Gaussians and directly
optimize it throughout whole optimization process. When using
Gaussians to learn radiance field, the newly-grownGaussians should
not be too far away from old Gaussians. Thus to learn a reasonable
growth distance, instead of applying radial distribution growth, we
can directly learn the distance by using standard deviation of original
Gaussians as a constraint. More specifically, we set ∥𝛿𝜇∥ = 𝑣 ∗ (1/1+
𝑒𝑥𝑝 (−𝑠)), where 𝑠 is learnable parameter in our implementation and
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Fig. 12. The illustration of learned sampling fields in heuristic design and our evolutive method. We visualize three 2D orthogonal cross sections (i.e. , YZ, XZ,
and XY) of the sampling fields. The scenes include Lego, Ship, and Chair from the Synthetic NeRF dataset.

Mip-NeRF360 Tanks&Temples
Method

SSIM↑ PSNR↑ LPIPS↓ Train FPS Mem SSIM↑ PSNR↑ LPIPS↓ Train FPS Mem
Plenoxels 0.626 23.08 0.463 25m49s 6.79 2.1GB 0.719 21.08 0.379 25m5s 13.0 2.3GB
INGP-Base 0.671 25.30 0.371 5m37s 11.7 13MB 0.723 21.72 0.330 5m26s 17.1 13MB
INGP-Big 0.699 25.59 0.331 7m30s 9.43 48MB 0.745 21.92 0.305 6m59s 14.4 48MB
M-NeRF360 0.792 27.69 0.237 48h 0.06 8.6MB 0.759 22.22 0.257 48h 0.14 8.6MB
3D-GS 0.815 27.21 0.214 41m33s 134 734MB 0.841 23.14 0.183 26m54s 154 411MB
3D-GS+EPO 0.838 27.45 0.208 47m24s 140 691MB 0.853 24.10 0.193 35m17s 161 380MB

Synthetic NeRF
Method

SSIM↑ PSNR↑ LPIPS↓
Plenoxels 0.958 31.71 0.049
Mip-NeRF 0.960 33.06 0.043
P-NeRF 0.967 30.71 0.081
P-NeRF+EPO 0.969 31.53 0.077
3D-GS 0.968 33.32 0.040
3D-GS+EPO 0.973 33.95 0.037

Table 3. EPO demonstrates superior performance on task of single scene radiance field modeling in both 3D Gaussian Splatting (3D-GS) framework and
point-NeRF (P-NeRF) framework, we test on real-world mipnerf360 [Barron et al. 2022], Tanks&Temples [Knapitsch et al. 2017] scenes as well as synthetic
scenes from Synthetic-NeRF [Mildenhall et al. 2020] dataset.

𝑣 is two times maximum standard deviation of original Gaussians.
The other properties (scales, sh coefficients etc.) of newly-grown
Gaussians are copied from original ones.

In addition to the learned growth, we also propose a learned split-
ting operation in ourmodel. Asmentioned in Sec. 3.3, we learn a split
mean shift term that decide the position of newly-split Gaussians.
The split mean shift is formulated as 𝛿𝜇𝑘 = 𝑅(𝜎𝑘 ∗ (1/1+𝑒𝑥𝑝 (−𝑠′))),
where 𝜎𝑘 and 𝑅 are the standard deviation and rotation matrix of
original Gaussians. 𝑠′ is the learned parameter that control the
length of the split shift. In addition to that, we also learn a scaling
factor 𝜙 = 1.2 ∗ (1/1+ 𝑒𝑥𝑝 (−𝑣)) + 1 for each split Gaussian, where 𝑣
is the learned scalar parameter, and the newly split Gaussian scale
will be divided by scaling factor 𝜙 . Similar to that in 3D-GS, our
differentiable growing and splitting operations focus on not well
reconstructed region with large view-space positional gradients.
We follow the same training and evaluation setup as in 3D-GS.

Similiar to that in 3D-GS, we initialize the position of 3D Gaus-
sians using SFM points except for NeRF synthetic scenes where the
Gaussian positions are randomly initialized. We set the number of
potential directions 𝑁 to be 128 and do the growing and splitting

operation every 100 training iterations. Each scene is optimized for
30k iterations.
ResultsWe test our model on both real-world scenes from pre-

viously published datasets, including full set of scenes from Mip-
NeRF360 dataset [Barron et al. 2022], eight scenes from LLFF dataset
[Mildenhall et al. 2019], two scenes from Tanks&Temples dataset
[Knapitsch et al. 2017], and synthetic scenes from the synthetic
Blender dataset [Mildenhall et al. 2020]. Those scenes have various
capture styles, and cover both bounded indoor scenes and large
unbounded outdoor environments.

Real-World Scenes We compare our method against several state-
of-the-art techniques including Mip-NeRF360, 3D-GS as well as
recent fast NeRF methods: InstantNGP and Plenoxels. We report
results for a basic configuration of InstantNGP (Base) as well as
a slightly larger network suggested by the authors (Big). We take
every 8th images for test set and others for train set and compare
with the standard PSNR, L-PIPS, and SSIM metrics, please see Table
3 and Table 4.
In contrast to Mip-NeRF 360, our model attains comparable re-

sults on the Mip-NeRF360 dataset and significantly outperforms it
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Plenoxel M-NeRF(360) 3D-GS Ours GT

Fig. 13. We show qualitative comparisons of our (Evolutive 3D Gaussian Splatting) to previous methods and the corresponding ground truth images from
held-out test views. The scenes are, from the top down: Bicycle, Garden, Bonsai from the Mip-NeRF360 dataset; Train and Truck from Tanks&Temples; Drums,
Ship, Ficus from NeRF Synthetic dataset. Differences in quality highlighted by arrows/insets.
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LLFF
Method

PSNR↑ SSIM↑ LPIPS↓
3D-GS 25.82 0.821 0.200
3D-GS+LGD 24.37 0.796 0.214
3D-GS+LSDG (Soft) 26.35 0.838 0.195
3D-GS+LSDG (Repara) 26.76 0.881 0.186
3D-GS+LSDG (Repara)+LSO 27.01 0.890 0.184

Table 4. Ablation study on different components of Evolutive 3D Gaussians
Splatting on LLFF [Mildenhall et al. 2019] dataset.

on the Tanks & Temples dataset. Furthermore, our model exhibits
markedly faster training and inference speeds. Notably, compared
to the original 3D-GS, our method achieves superior performance
with, on average, fewer Gaussians per scene. This leads to reduced
memory requirements and accelerated rendering speeds. This im-
provement is attributed to the efficacy of the evolution strategy,
which enables more effective growth and splitting of Gaussians.
We also show qualitative results of this comparison on test view
in Fig. 13. Compared with previous methods, our model tends to
preserve more visual detail from far away (Scene GARDEN, TRUCK
and TRAIN) and recover some delicate thin structures (Scene BICY-
CLE, BONSAI), while original 3D-GS and Mip-NeRF360 may fail at
those circumstances.
Synthetic Blender Scenes In addition to realistic scenes, we also

evaluate our approach on the synthetic NeRF dataset, results in Fig 3.
Even though our approach starts training from 100K uniformly ran-
dom Gaussians inside a volume that encloses the scene bounds, our
approach can quickly converge to reasonable Gaussians, with better
performance than all previous state-of-the-art methods. Similarly to
the case in real-world scene, the Gaussians in our model grows and
splits in a more efficient way, resulting in modeling the radiance
field with fewer Gaussians which achieving better performance
compared to 3D-GS.

Ablations In this part, we evaluate different components of our
evolutive Gaussians design on LLFF dataset, including the learned
spherical distribution growth (LSDG) and learned splitting operation
(LSO), results shown in Table 4. For LSDG design, we compare
against the straightforward method of directly learning growth
direction (LGD). In our learned spherical distribution growth design,
we choose to grow along the direction of maximum probability and
propose the reparameterization (Repara-) strategy for optimization
as shown in Alg. 1. To validate this proposal, we also test a soft
variant to learn spherical distribution growth (Soft-), where grow
direction is decided as weighted sum of all possible directions 𝑑 =∑𝑁
𝑖=1 𝑝𝑖𝑑𝑖 .
When adopting the naive way of directly learning the growth

direction, we find that the performance is even worse than base-
line model. We speculate that it is because directly learning the
growth direction has over-flexibility which makes the model to be
vulnerable to local minimum. Compared to Soft version of learning
spherical distribution growth, our reparameterization design adopts
a more reasonable way of choosing growth direction, resulting in a
better performance. The inclusion of learning splitting operation

helps to further boost the performance. Our complete model is able
to outperform original 3D-GS on PSNR by a significant margin of
1.2 dB, demonstrating the effectiveness of our evolutive primitive
organization design.

P-NeRF P-NeRF+EPO GT

Fig. 14. We show qualitative comparisons between P-NeRF [Xu et al. 2022]
with our method that combines P-NeRF with evolutive primitive organiza-
tion (EPO), as well as the corresponding ground truth images from held-out
test views.

5.3.2 Evolutive Neural Point. In addition to evolutive 3D Gauss-
ian Splatting, we also test Evolutive Primitive Organization in the
framework of Point-NeRF (P-NeRF). In P-NeRF, the whole scene is
composed of neural points feature that encode the radiance field.
Instead of using splatting as in 3D-GS, P-NeRF adopts volume ren-
dering mechanism where sampled points along the ray will query
feature from neighbouring neural points, which will then be de-
coded into density and rgb color space. In P-NeRF, they adopts
hand-designed growing and pruning operation to avoid holes and
outliers in initial points. These operations have similar issue as in
3D-GS, that the operations are no-differentiable and may misalign
with the final objective.

To alleviate this issue, we regard each neural point as scene prim-
itive and learn the growing operation in per-scene optimization
process. Particularly, the position of new neural points will be that
of old neural points plus a learnable growth term 𝛿𝜇. We apply
spherical distribution growth to learn growth directions of new
neural points. Similar to that in 3D-GS, the growth distance will be
learned directly as ∥𝛿𝜇∥ = 𝑣 ∗ (1/1 + 𝑒𝑥𝑝 (−𝑠)), where 𝑠 is learnable
parameter in our implementation and 𝑣 is two times initial voxel
grid size in P-NeRF.
We follow the same per-scene optimization setup as in P-NeRF,

where we adopt a loss function that combines the rendering and
the sparsity loss. We do per-scene training for 20k iterations and
perform point growing and pruning every 1K iterations. we evaluate
our approach on the synthetic NeRF dataset, results in Table. 3.
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UV Mapping on DTU
Models

Regularization PSNR↑ SSIM↑
NeuTex ✓ 28.02 0.891
NGF ✓ 27.74 0.887
Ours × 29.41 0.907

Table 5. Applications in UV mapping and editing.

Compared to P-NeRF baseline method, the adoption of evolution
neural points helps to improve performance on all metric, especially
on PSNR and LPIPS by a goodmargin. This proves that our Evolutive
Primitive Organization is effective in both volume rendering and
splatting mechanism. Qualitative result is shown in Fig. 14.
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Fig. 15. UV editing results.

6 APPLICATIONS

6.1 UV Mapping
Learning UV mapping is a non-trivial task in radiance fields. As UV
mapping aims to connect the 2D space and 3D space, our evolutive
gauge transformation is a good fit to achieve it. For this case, we
aims to learn a mapping from 3D space to 2D plane, and adopt NeRF
as the base model with a relay learning mechanism. Specifically, we
train a NeRF with identical mapping (i.e. , without learning gauge
transformation) for the first 30000 steps. As the geometry emerges
which means the gradient becomes stable, we replace the identical
mapping with the learnable transformation from 3D space to 2D
plane in the color branch (Note the transformation is not applied in
the density branch). After training, a UV map can be obtained by
querying the radiance field with uniformly sampled points on the
2D plane.
We compare the performance of our method with NGF [Zhan

et al. 2023] and Neutex [Xiang et al. 2021] as shown in Table 5. Our
method outperforms previous methods on the rendering quality
with UV mapping on DTU dataset [Aanæs et al. 2016]. With the

obtained UV maps, we easily edit the UV to the target texture as
shown in Fig. 15.

6.2 Generalizable Gaussian Splatting
3D-GS has demonstrated remarkable performance and real-time
rendering through rasterization-based rendering. However, the need
for retraining on each new scene limits its practical applications. One
way to tackle this bottleneck is to combine the 3D-GS representation
with cross-scene generalizable NeRF models, which can directly
synthesize novel views of unseen scenes. To achieve that, we need to
build a model that can directly predict 3D Gaussian parameters in a
feed-forward manner given images of new scene. Thus, the gradient
should be able to be back-propagated to control the grow and prune
of Gaussians. Our evolutive primitive organization exactlymaintains
the gradient from training objective where scene primitives will be
implicitly grown. It turns to be a promising optimization solution
for training generalizable 3D-GS model.
More specifically, given source view images and their camera

parameter, our model first use an transformer-based encoder that ag-
gregates multi-view image features via epipolar attention [Charatan
et al. 2023; He et al. 2020; Wang et al. 2022] to predict pixel-wise fea-
ture. Then each feature will be passed through a decoder to directly
predict the parameter of Gaussians along each ray. With known
camera parameter, the direction along which to grow Gaussians has
been decided. Thus we apply radial distribution growth method to
predict the position of nascent Gaussians. We divide each ray into 𝑁
bins and learn the probability indicating the likelihood of Gaussians
locating in each bin. And we decide the position of Gaussians by
choosing the bin of maximum likelihood. The reparameterization
strategy ( shown in Alg. 1) will be used here for optimization.
We evaluate our model on the task of wide-baseline novel view

synthesis from stereo image pairs, conducting experiments on the
RealEstate10k [Zhou et al. 2018] dataset. Following previous base-
line [Du et al. 2023], we conduct experiments on image of resolution
256x256. In multi-view image encoder, we use a DINO [Caron et al.
2021] pretrained ResNet-50 [He et al. 2016] followed by a ViT-B/8 vi-
sion transformer [Dosovitskiy et al. 2020]. Adam optimizer [Kingma
and Ba 2014] is used for training.

We compare our model against three novel view-synthesis base-
lines, including GNPR [Suhail et al. 2022], pixelNeRF [Yu et al. 2021b]
and NVS-WB [Du et al. 2023]. GNPR uses a vision transformer-based
backbone to compute epipolar features, and a light field-based ren-
derer to compute pixel colors. pixelNeRF decodes pixel-aligned
feature into neural radiance fields. NVS-WB uses a multi-view self-
attention encoder and combines light field rendering with an epipo-
lar transformer. As shown in Table. 6, our model is significantly
more efficient than all the baselines models, inheriting the advan-
tage of using Gaussians as scene representation. Particularly, our
model is more than 100 times faster than the second best baseline
model. Meanwhile, our model is able to outperform the baselines
on all metrics. These are attributed to the differentiable nature of
our evolutive primitive organization module. Qualitative results are
shown in Fig. 16.
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pixelNeRF GPNR NVS-WB Ours GTRef.

Fig. 16. We show qualitative comparisons of ours to previous methods and the corresponding reference images from RealworldEstate10k dataset.

Method PSNR↑ SSIM↑ LPIPS↓ Inference Time (s) ↓
NVS-WB 24.78 0.820 0.213 1.32
GPNR 24.11 0.793 0.255 NA
pixelNeRF 20.43 0.589 0.550 5.30
Ours 25.64 0.853 0.148 0.11

Table 6. Application in generalizable gaussian splatting enabled by evolutive
primitive organization: we show wide-baseline generalizable novel view
synthesis from stereo images pairs on the real-world RealEstate10k [Zhou
et al. 2018] dataset. Our model outperform all baseline methods in terms
PSNR, LPIPS, and SSIM, while requiring much less inference time.

7 LIMITATIONS AND FUTURE WORK
Although ERM has demonstrated broad applications ranging from
enhancing performance of existing models to unlocking new possi-
bilities for previously unattainable tasks, the current applications
focus on the isolated utilization of individual evolutive elements
among the three. Our current work reveals the substantial poten-
tial of evolutive rendering when applied to distinct components,
however, we do not yet exploit its full potential. The integration
of all of them remains a worthwhile avenue for future exploration
and we will investigate this in the future. Moreover, by enabling
the differentiability of previous manually crafted components, ad-
ditional parameters will be learned within the whole framework.
Consequently, the incorporation of an evolutive element typically
results in longer training time.

8 CONCLUSION
In this work, we introduce evolutive rendering models (ERMs) that
replace the heuristic designs in rendering models with learnable
components that are fully aligned with the final rendering objective.
In particular, we introduce a comprehensive learning framework
that underpins the evolution of three principal rendering elements,
including the gauge transformations, ray sampling mechanisms, and

primitive organization. Our extensive experiments and thorough
analysis show that the evolutive rendering models outperform their
vanilla counterparts, hence demonstrating the large potential of
evolutive rendering in computer graphics.
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